Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 22(16)2021 Aug 23.
Article in English | MEDLINE | ID: covidwho-1662696

ABSTRACT

Magnesium (Mg) is a pivotal and very complex component of healthy aging in the cardiovascular-muscle-bone triad. Low Mg levels and low Mg intake are common in the general aging population and are associated with poorer outcomes than higher levels, including vascular calcification, endothelial dysfunction, osteoporosis, or muscle dysfunction/sarcopenia. While Mg supplementation appears to reverse these processes and benefit the triad, more randomized clinical trials are needed. These will allow improvement of preventive and curative strategies and propose guidelines regarding the pharmaceutical forms and the dosages and durations of treatment in order to optimize and adapt Mg prescription for healthy aging and for older vulnerable persons with comorbidities.


Subject(s)
Cardiovascular Diseases/metabolism , Magnesium/metabolism , Osteoporosis/metabolism , Sarcopenia/metabolism , Aging/metabolism , Animals , Bone and Bones/metabolism , Healthy Aging/metabolism , Humans , Muscle Strength/physiology , Muscle, Skeletal/metabolism
2.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1389394

ABSTRACT

SARS-CoV-2 currently lacks effective first-line drug treatment. We present promising data from in silico docking studies of new Methisazone compounds (modified with calcium, Ca; iron, Fe; magnesium, Mg; manganese, Mn; or zinc, Zn) designed to bind more strongly to key proteins involved in replication of SARS-CoV-2. In this in silico molecular docking study, we investigated the inhibiting role of Methisazone and the modified drugs against SARS-CoV-2 proteins: ribonucleic acid (RNA)-dependent RNA polymerase (RdRp), spike protein, papain-like protease (PlPr), and main protease (MPro). We found that the highest binding interactions were found with the spike protein (6VYB), with the highest overall binding being observed with Mn-bound Methisazone at -8.3 kcal/mol, followed by Zn and Ca at -8.0 kcal/mol, and Fe and Mg at -7.9 kcal/mol. We also found that the metal-modified Methisazone had higher affinity for PlPr and MPro. In addition, we identified multiple binding pockets that could be singly or multiply occupied on all proteins tested. The best binding energy was with Mn-Methisazone versus spike protein, and the largest cumulative increases in binding energies were found with PlPr. We suggest that further studies are warranted to identify whether these compounds may be effective for treatment and/or prophylaxis.


Subject(s)
Antiviral Agents/chemistry , Metals/chemistry , Methisazone/chemistry , Molecular Docking Simulation , SARS-CoV-2/chemistry , Antiviral Agents/metabolism , Calcium/chemistry , Calcium/metabolism , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Drug Design , Humans , Iron/chemistry , Iron/metabolism , Magnesium/chemistry , Magnesium/metabolism , Manganese/chemistry , Manganese/metabolism , Metals/metabolism , Methisazone/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Zinc/chemistry , Zinc/metabolism , COVID-19 Drug Treatment
3.
Eur Rev Med Pharmacol Sci ; 25(10): 3772-3790, 2021 05.
Article in English | MEDLINE | ID: covidwho-1264762

ABSTRACT

Multiple epidemiological studies have suggested that industrialization and progressive urbanization should be considered one of the main factors responsible for the rising of atherosclerosis in the developing world. In this scenario, the role of trace metals in the insurgence and progression of atherosclerosis has not been clarified yet. In this paper, the specific role of selected trace elements (magnesium, zinc, selenium, iron, copper, phosphorus, and calcium) is described by focusing on the atherosclerotic prevention and pathogenesis plaque. For each element, the following data are reported: daily intake, serum levels, intra/extracellular distribution, major roles in physiology, main effects of high and low levels, specific roles in atherosclerosis, possible interactions with other trace elements, and possible influences on plaque development. For each trace element, the correlations between its levels and clinical severity and outcome of COVID-19 are discussed. Moreover, the role of matrix metalloproteinases, a family of zinc-dependent endopeptidases, as a new medical therapeutical approach to atherosclerosis is discussed. Data suggest that trace element status may influence both atherosclerosis insurgence and plaque evolution toward a stable or an unstable status. However, significant variability in the action of these traces is evident: some - including magnesium, zinc, and selenium - may have a protective role, whereas others, including iron and copper, probably have a multi-faceted and more complex role in the pathogenesis of the atherosclerotic plaque. Finally, calcium and phosphorus are implicated in the calcification of atherosclerotic plaques and in the progression of the plaque toward rupture and severe clinical complications. In particular, the role of calcium is debated. Focusing on the COVID-19 pandemia, optimized magnesium and zinc levels are indicated as important protective tools against a severe clinical course of the disease, often related to the ability of SARS-CoV-2 to cause a systemic inflammatory response, able to transform a stable plaque into an unstable one, with severe clinical complications.


Subject(s)
Atherosclerosis/pathology , Trace Elements/metabolism , Atherosclerosis/metabolism , COVID-19/pathology , COVID-19/virology , Calcium/blood , Calcium/metabolism , Copper/blood , Copper/metabolism , Humans , Iron/blood , Iron/metabolism , Magnesium/blood , Magnesium/metabolism , Matrix Metalloproteinases/metabolism , Phosphorus/blood , Phosphorus/metabolism , Risk , SARS-CoV-2/isolation & purification , Selenium/blood , Selenium/metabolism , Severity of Illness Index , Trace Elements/blood , Zinc/blood , Zinc/metabolism
4.
Nat Commun ; 12(1): 3287, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1253936

ABSTRACT

The SARS-CoV-2 nsp16/nsp10 enzyme complex modifies the 2'-OH of the first transcribed nucleotide of the viral mRNA by covalently attaching a methyl group to it. The 2'-O methylation of the first nucleotide converts the status of mRNA cap from Cap-0 to Cap-1, and thus, helps the virus evade immune surveillance in host cells. Here, we report two structures of nsp16/nsp10 representing pre- and post-release states of the RNA product (Cap-1). We observe overall widening of the enzyme upon product formation, and an inward twisting motion in the substrate binding region upon product release. These conformational changes reset the enzyme for the next round of catalysis. The structures also identify a unique binding mode and the importance of a divalent metal ion for 2'-O methylation. We also describe underlying structural basis for the perturbed enzymatic activity of a clinical variant of SARS-CoV-2, and a previous SARS-CoV outbreak strain.


Subject(s)
Magnesium/chemistry , RNA Caps/metabolism , RNA, Viral/metabolism , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Amino Acid Sequence , Binding Sites , Biocatalysis , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Viral , Humans , Magnesium/metabolism , Methylation , Methyltransferases , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA Caps/chemistry , RNA Caps/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/ultrastructure , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/genetics
5.
Nutrients ; 13(1)2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1067765

ABSTRACT

Reduced magnesium (Mg) intake is a frequent cause of deficiency with age together with reduced absorption, renal wasting, and polypharmacotherapy. Chronic Mg deficiency may result in increased oxidative stress and low-grade inflammation, which may be linked to several age-related diseases, including higher predisposition to infectious diseases. Mg might play a role in the immune response being a cofactor for immunoglobulin synthesis and other processes strictly associated with the function of T and B cells. Mg is necessary for the biosynthesis, transport, and activation of vitamin D, another key factor in the pathogenesis of infectious diseases. The regulation of cytosolic free Mg in immune cells involves Mg transport systems, such as the melastatin-like transient receptor potential 7 channel, the solute carrier family, and the magnesium transporter 1 (MAGT1). The functional importance of Mg transport in immunity was unknown until the description of the primary immunodeficiency XMEN (X-linked immunodeficiency with Mg defect, Epstein-Barr virus infection, and neoplasia) due to a genetic deficiency of MAGT1 characterized by chronic Epstein-Barr virus infection. This and other research reporting associations of Mg deficit with viral and bacterial infections indicate a possible role of Mg deficit in the recent coronavirus disease 2019 (COVID-19) and its complications. In this review, we will discuss the importance of Mg for the immune system and for infectious diseases, including the recent pandemic of COVID-19.


Subject(s)
Aging/physiology , COVID-19/metabolism , Communicable Diseases/metabolism , Magnesium Deficiency/complications , Magnesium/metabolism , Aged , COVID-19/etiology , COVID-19/immunology , COVID-19/virology , Cation Transport Proteins/metabolism , Communicable Diseases/immunology , Communicable Diseases/microbiology , Communicable Diseases/virology , Epstein-Barr Virus Infections/metabolism , Female , Humans , Magnesium/immunology , Magnesium Deficiency/immunology , Magnesium Deficiency/metabolism , Male , SARS-CoV-2/immunology , X-Linked Combined Immunodeficiency Diseases/metabolism
6.
Semin Cell Dev Biol ; 115: 37-44, 2021 07.
Article in English | MEDLINE | ID: covidwho-933484

ABSTRACT

Magnesium is an essential element of life, involved in the regulation of metabolism and homeostasis of all the tissues. It also regulates immunological functions, acting on the cells of innate and adaptive immune systems. Magnesium deficiency primes phagocytes, enhances granulocyte oxidative burst, activates endothelial cells and increases the levels of cytokines, thus promoting inflammation. Consequently, a low magnesium status, which is often underdiagnosed, potentiates the reactivity to various immune challenges and is implicated in the pathophysiology of many common chronic diseases. Here we summarize recent advances supporting the link between magnesium deficiency, inflammatory responses and diseases, and offer new hints towards a better understanding of the underlying mechanisms.


Subject(s)
Endothelial Cells/metabolism , Inflammation/metabolism , Magnesium Deficiency/metabolism , Magnesium/metabolism , Animals , Cation Transport Proteins/metabolism , Homeostasis/physiology , Humans
7.
Cell ; 182(6): 1560-1573.e13, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-710427

ABSTRACT

SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated and transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryoelectron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template product in complex with two molecules of the nsp13 helicase. The Nidovirales order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12 thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapy development.


Subject(s)
Methyltransferases/chemistry , RNA Helicases/chemistry , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Virus Replication , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Betacoronavirus/genetics , Betacoronavirus/metabolism , Betacoronavirus/ultrastructure , Binding Sites , Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , Holoenzymes/chemistry , Holoenzymes/metabolism , Magnesium/metabolism , Methyltransferases/metabolism , Protein Binding , RNA Helicases/metabolism , RNA, Viral/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL